Homework: CCF2

How many excess electrons must be distributed uniformly within the volume of an isolated plastic sphere $\mathbf{2 6 . 0} \mathbf{~ c m}$ in diameter to produce an electric field of magnitude $1500 \mathrm{~N} / \mathrm{C}$ just outside the surface of the sphere?
[We identify that the sphere is uniformly charged, and spherically symmetric. We can show e.g., by example 22.9 in Y\&F, that the electric field outside the sphere is the same as for a point charge of the same charge located at the centre of the sphere.]

We want to find the number of excess electrons inside the sphere, which can be obtained by dividing the excess charge Q just outside of the sphere by the charge of an electron, q_{e}. The electric field at a separation r due to a point charge is

$$
\begin{equation*}
E=\frac{k Q}{r^{2}}, \tag{B.1}
\end{equation*}
$$

so the excess charge is

$$
\begin{equation*}
Q=\frac{E r^{2}}{k} \tag{B.2}
\end{equation*}
$$

We are given the diameter so the radius $R=0.130 \mathrm{~cm}$, so the excess charge
is

$$
\begin{equation*}
Q=\frac{1500 \times 0.130^{2}}{8.99 \times 10^{9}}=2.82 \times 10^{-9} \mathrm{C} \tag{B.3}
\end{equation*}
$$

The number of electrons is thus

$$
\begin{equation*}
n=\frac{Q}{q_{e}}=\frac{2.82 \times 10^{-9}}{1.60 \times 10^{-19}}=1.79 \times 10^{10} \tag{B.4}
\end{equation*}
$$

[The most common mistake was using 26.0 cm as the radius and not squaring the radius.]

What is the electric field at a point 14.5 cm outside the surface of the sphere?

We are considering a point 14.5 cm away from the surface of the sphere, so the total radius away from the centre of the sphere is $r=R+0.145=$ 0.275 m .

We know that the electric field attenuates as $1 / r^{2}$, so the electric field at the position r is

$$
\begin{equation*}
E=\frac{k Q}{r^{2}}=\frac{8.99 \times 10^{9} \times 2.83 \times 10^{-9}}{0.275^{2}}=3.35 \times 10^{2} \mathrm{NC}^{-1} \tag{B.5}
\end{equation*}
$$

[There were no issues with this question for those who answered (a) correctly.]

