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Homework: QM3

A particle trapped in 0 < x < L in a 1 dimensional infinite potential well
has energy levels En = n

2~2º2/(2mL
2). (a) Find the width of the box if

the ground state energy equals 13.6eV (the absolute value of the bind-
ing energy of the hydrogen atom). (b) Find the width of the box if a
transition from the n=2 to n=1 state emits a photon with l=122nm (as
in hydrogen). What is the ground state energy of this box? (c) Describe
the differences between the 1 dimensional infinite potential and that
of a real hydrogen atom which might account for the differences be-
tween your answers for (a) and (b)

The energy levels in an infinite well are given analytically as

En = n
2º2~2

2mL2 , (A.1)

where n is the principal quantum number (one of four numbers used to
describe the state of an electron—you’ll meet the rest in stage 2), m is the
mass of the particle and L is the width of the box.

[The question does not state which particle it is being trapped, so assume

it is an electron from the context of the problem (the binding energy of an

electron in a hydrogen atom). Normally this will be given in an exam to

avoid confusion.]
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In (a), we are interested in the width of the box. Rearranging gives

L
2 = n

2º2~2

2Enm
. (A.2)

The bound state energies in a hydrogen atom are

En = E1

n2 = °13.6 eV
n2 , (A.3)

for n 2 Z. [n strictly takes on only positive values, and n = 1 is, again,

the ground state.] These are the eigenenergies of the time-independent
Schrödinger equation. Here, we consider the absolute value of this (ba-
sically, just readjusting where we take our reference energy E = 0).

In an infinite well, the ground state is the n = 1 state (there is no state
with n = 0, which corresponds to zero wave function).

Equating the ground state (n = 1) energy (in joules) of the electron in
a hydrogen atom with the with the ground state of an infinite well, one
finds that

L
2 = 12 £º2~2

2£°13.6£1.60£10°19 £9.11£10°19

=) L = 1.66£10°10 m.
(A.4)

For (b), we wish to find the energy difference between the n = 2 (first
excited state) and n = 1 (ground state), as this energy is the energy of the
photon emitted. Thus,

E2 °E1 =
22º2~2

2mL2 ° 12º2~2

2mL2 = 3£º2~2

2mL2 . (A.5)

We are given that the wavelength of the emitted photon is ∏= 122 nm, so
the photon energy is given by

E∞ =
hc

∏
(A.6)
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Equating E2 °E1 = E∞ gives

3º2~2

2mL2 = hc

∏
, (A.7)

so this implies that

L
2 = 3º2~2∏

2mhc
= 3º2~2(122£10°9)

2£9.11£10°31hc

=) L = 3.33£10°10 m.
(A.8)

For (c), the hydrogen atom has a 3D spherical structure, while the infi-
nite potential well is a 1D model. The hydrogen atom has a Coulomb
potential that depends on 1/r , whereas the infinite potential well has a
constant potential (infinite) outside the well and zero inside. [You will

study the mathematics of the hydrogen atom in stage 2 and 3 quantum

mechanics—it is actually a very advanced topic!]

An electron is trapped in a 1 dimensional finite well, whereU = 0 for 0 <
x < L and U = 6E11 for x < 0 and x > L where E11 = ~2º2/(2mL

2), i.e.
the ground state energy of an infinite well of the same width. This finite
well potential has 3 bound states, with E1 = 0.625E11, E2 = 2.43E11,
E3 = 5.09E11, and L = 1 nm. (a) What is the maximum wavelength
which will eject an electron from the ground state? (b) What is the ki-
netic energy of an electron which is ejected from the first excited state
by a photon of wavelength ∏= 500 nm.

For (a), we need to consider the energy difference between the ground
state and the potential energy outside of the well, U0, in order to calculate
the minimum energy required to eject an electron from the ground state.
The energy difference is ¢E =U0 °E1. We associate ¢E with the energy
released during this ejection, which is exactly the energy of the photon
hc/∏. So,

hc

∏
=U0 °E1 = (6°0.625)E11 = 5.375

~2º2

2mL2 . (A.9)
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Rearranging, we find

∏= 2hcL
2
m

5.375~2º2

= 2£6.63£10°34 £3.3.00£108 £ (1.00£10°9)2 £9.11£10°31)
5.375£ (1.05£10°34)2º2

=) ∏= 614 nm.
(A.10)

To 1 s.f., ∏= 600 nm.

In (b), we are interested in the kinetic energy of an electron ejected from
its first excited state (the n = 2 state—remember that in infinite and finite
wells we start counting at n = 1).

The photon energy is

E = hc

∏
= 6.63£10°34 £3.00£108

500£10°9 = 3.98£10°19 J (A.11)

[NB: We would never quote an energy of this order of magnitude in joules.

When quoting the answer, we would need to convert to eV. However, we

need to use this in subsequent calculations, so we will keep it in J.]

The ejection energy is then ¢E = U0 °E2 = (6° 2.43)E11 = ·· · = 2.15£
10°19 J which is calculated in the same way as (a).

Now, we can find the kinetic energy, T , by subtracting the energy of the
first excited state (E2 = 2.43E11) from the photon’s energy:

T = E∞°E2 = 3.98£10°19J°2.15£10°19 J = 1.84£10°19 J.

To 1 s.f., T = 1 eV.

A wave function which is a solution of the time-dependent Schrödinger
equation (and not the time-independent Schrödinger equation) is given
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by ™(t = 0, x) = A√1(x)+B√2(x), where √1 and √2 are different solu-
tions of the time-independent Schrödinger equation (e.g., for a parti-
cle in a 1d infinite well). (a) Write ™(t , x) for t 6= 0. (b) Determine the
probability density and probability of finding a particle within a dis-
tance dx of x at a time t . State whether the probability density and
corresponding probability is time-dependent or time-independent

[I have corrected this question from the problem sheet.]

The wave function at t = 0 is given by a linear superposition of states
in e.g., an infinite well. These states have different energies, E1 and E2.
As the wave function evolves in time, each state picks up a phase factor
exp(°i En t/~). Thus, the full (yes, for all time!) evolution of the wave
function is

™(t , x) = A√1(x)e°i E1t/~+B√2(x)e°i E2t/~, (A.12)

where |A|2 + |B |2 = 1 determine the probabilities of obtaining the indi-
vidual states √1 and √2 upon measurement of the wave function (i.e.,
the probability at which the wave function will collapse into a particular
state, √1 or √2).

For (b), to find the probability to find the particle within d x of x at time
t , we first need to calculate the probability density function. The prob-
ability density is given by the square of the absolute value of the wave-
function. For the given wavefunction, we have:

™(t , x) = A√1(x)e°i E1t/~+B√2(x)e°i E2t/~. (A.13)

Taking the complex conjugate of the wavefunction, we get:

™§(t , x) = A
§√§

1 (x)ei E1t/~+B
§√§

2 (x)ei E2t/~. (A.14)

Now, we can find the probability density function by multiplying the wave-
function and its complex conjugate:

|™(t , x)|2 =™§(t , x)™(t , x), (A.15)
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which leads to

|™(t , x)|2 = |A|2|√1(x)|2 +|B |2|√2(x)|2

+ A
§

B
§√§

1 (x)√§
2 (x)ei (E1°E2)t/~+ AB√1(x)√2(x)e°i (E1°E2)t/~.

(A.16)
The probability to find the particle within dx of x at time t is given by:

P (x, t )d x = |™(t , x)|2d x (A.17)

From the above expression for |™(t , x)|2, we can see that it consists of
time-independent terms |A|2|√1(x)|2 and |B |2|√2(x)|2, and time-dependent
terms A

§
B
§√§

1 (x)√§
2 (x)ei (E1°E2)t/~ and AB√1(x)√2(x)e°i (E1°E2)t/~. There-

fore, the probability to find the particle within d x of x at time t is depen-
dent on time.


